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Thermoacoustic effects in a resonance tube 
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Institute of Aerodynamics, Swiss Federal Institute of Technology, Zurich 

(Received 10 September 1973 and in revised form 30 September 1974) 

New experiments with a gas-filled resonance tube have shown that not only 
heating, but also cooling of the tube wall is possible and that these phenomena 
are not restricted to oscillation amplitudes that generate shocks. The present 
paper concentrates on amplitudes outside the shock region. For this case, an 
extended acoustic theory is worked out. The results show cooling in the section 
of the tube with maximum velocity amplitude (and thus dissipation) and marked 
heating in the region of the velocity nodes. A strong dependence of these effects 
on the Prandtl number is noted. The results are in good agreement with experi- 
ments. Although the theory is not valid for proper resonance conditions, it  
nevertheless sheds some light on what happens when nonlinear effects dominate. 

Closely related to the limit of validity of the thermoacoustic theory is the 
question of transition from laminar to turbulent flow in the viscous boundary 
layer (Stokeslayer). This problem has also been investigated; the results are given 
in a separate paper (Merkli & Thomann 1975). In  the present article laminar 
flow is assumed. 

1. Introduction 
Sprenger (1 954) published a paper describing his surprising experimental 

finding that the oscillating flow generated in a gas-filled tube by directing a jet 
into the open end (Hartmann-Sprenger tube) can produce strong heating of the 
closed end (temperatures of 1000 OK or more were observed). The attainable 
closed-end temperatures are much higher than the free-stream stagnation 
temperatures of the impinging jet. It was soon discovered that travelling shock 
waves are a main feature of the flow. Several authors (Sibulkin & Vrebalovich 
1958; Hall & Berry 1959; Wilson & Resler 1959; Shapiro 1960) tried to explain 
the heating effect through the entropy increase due to these discontinuities. 
However, as the shock strength does not change along the tube, the heating does 
not change and these theories cannot explain why mainly the tube end is heated. 
Brocher & Maresca (1970, 1973) formulated a complete energy balance for the 
Hartmam-Sprenger tube and showed that wall friction can be a predominant 
mechanism for heat production. Moreover, they found that these tubes lose an 
appreciable amount of heat through mass exchange at  the contact surface 
between the penetrating jet and the gas contained in the tube. This means that 
the approximately known boundary conditions at this contact surface are 
important for the full understanding of the flow in the tube. To overcome this 
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difficulty in our investigation, the tube length has been essentially doubled and 
the oscillations are now driven by small-amplitude harmonic oscillations of a flat 
piston in the vicinity of the velocity node, instead of by the ‘gas piston’ (jet) 
with large amplitude a t  the velocity antinode used to drive the Hartmann- 
Sprenger tube. With this arrangement, we always have the same gas in the tube 
and u(x ,  R) = v(x, R)  = u(L, r )  = 0, u(0, r )  = hoeiwt and T ( x ,  R)  = To = constant, 
where u and v are the velocity components in the axial ( x )  and radial ( r )  directions 
respectively, T the temperature, t time, o the radian piston frequency, L the tube 
length and R the tube radius. 

The present paper (for full details see Merkli 1973) treats such a piston-driven 
resonance tube. Temperature measurements along the tube wall ( $ 5 )  reveal the 
following. 

(a) Heating of the closed end as in the Hartmann-Sprenger tube. 
(b )  Thermal effects that are also present outside the small frequency band 

around resonance where shock waves occur. 
(c) Cooling of the tube wall (for shock-free motions) in the region of the velocity 

maximum, where dissipation is largest. 
This paper focuses mainly on understanding the shock-free regime of oscilla- 

tions. In  this case, the acoustic theory can be applied by extending it to second 
order (thermoacoustic approach, $ 2) to obtain an energy balance for the tube. 
The agreement between this theory and the experiments is good. 

2. Theory 
The basic equations governing the motion of a fluid are the axial and radial 

momentum equations, the continuity equation, the energy equation and the 
equation of state. For a perfect gas with constant specific heats cp and c,, constant 
dynamic viscosity p and constant heat conductivity A, these are (in cylindrical 

2 vav avau v a u  av au 

(4) 
p = pR,T, ( 5 )  

where R, is the gas constant, p the pressure and p the density. 
I n  acoustics, where only small variations of the flow properties about a basic 
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state occur, a perturbation calculation can be used and the above equations 
simplified by setting (with E < 1) 

I p =pO+€p1+€2p2+ ..., 

p = p0+ep1+@p2 + ..., 
€U1 + €2U2 + . . . , 

V =  €vl+e2v2+ ... . 

T = TO+~Tl+e2T2+ ..., 

u = 

Terms of higher order are neglected. Note that uo = 0 as the basic state is a t  rest. 
In acoustics it is sufficient to consider terms up to first order in E only. For the 
boundary conditions of a long tube (L  9 R)  with uniform wall temperature To 
(which allow further simplifications), the acoustic solution of the basic differential 
equations was given by Bergh & Tijdeman (1965) : 

where ct = R(w/v ) t  eSni, 

y is the ratio of the specific heats, a, the speed of sound and J,, the Bessel function 
of the first kind of order v. Fluid motion induced by harmonic oscillations of a flat 
piston is well described by this solution as long as the frequency is below the 
‘ cut-off’ frequency for radial oscillations and above the frequency where viscous 
nodes occur according to Scarton & Rouleau (1973). In  this frequency range the 
pressure is uniform across the tube and, for high enough Reynolds numbers, a thin 
boundary layer (Stokes layer) forms at the wall. The present experiments are 
in this range. 

The constants A and B are determined by the boundary conditions 

u1(x = 0) = @leiWt and ul(L) = 0, 

where 1 is the piston amplitude. The first condition cannot be satisfied exactly 
by (8), which is of the form u1 = f(x) g ( r )  eiot. At present, the best way to resolve 
this difficulty seems to be to average u1 over the cross-section a t  x = 0. For the 

11-2 
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FIGURE 1. Amplitudes of axial velocity and pressure on the tube axis for the case L = 1.4 m, 
2 =113.8mm,R = 9.5mm,,f= 115Hz,fr,, = 122.4Hz,airatp0 = 105N/maandT,= 298°K. 

thin boundary layers of our experiments, the influence of the boundary layer 
may be neglected, leading to uI(x = 0, r = 0) = 01 eiwt and 

Figure 1 gives typical distributions of the axial-velocity and pressure ampli- 
tudes along the tube axis according to (7) and (8). 

The heating and cooling effects observed in the experiments are time averages. 
Therefore only terms of second (c2) and higher order in the energy equation 
contribute to them, and we have to extend the perturbation calculation of Bergh 
& Tijdeman to second order. For a boundary layer thin compared with R Burns 
(1967) gives solutions for the pressure up to order c4 for a progressive wave. Here 
q-e get for the second-order terms (with To = constant) 

ap21ar = 0, 

P2 -Po R, Tz - Pz R, To = PlR,Tl* 

The boundary conditions are u2 = v2 = T2 = 0 at the tube wall. 
These equations for the variables of second order (with subscript 2 )  correspond 

to t,hose of Bergh & Tijdeman for the variables of first order if the right-hand sides 
are put equal to zero. Yet solution of the full second-order system involves much 
more labour than solution of the first-order one owing to the new inhomogeneous 
terms containing products of first-order variables. Fortunately it is not necessary 
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to solve the whole set if we are interested only in the local time-averaged heat flux 
penetrating into the tube wall, given by the relation 

(4) = (-A[aT2/arlR),  (19) 

where angular brackets indicate time averages. In  this case we can separate the 
energy equation (1  7 )  from the rest of the system (by time averaging) and integrate 
it independently with respect to r to yield the time average (aT,/ar) of the 
temperature gradient at the tube wall. This procedure leads to the simple 
equation (see appendix) 

As the quantities u1 and Tl are known [see (8) and (1 I)], the problem is reduced to 
an ordinary integration. It may readily be seen that the fist-order variables can 
be represented, in complex notation, in the following manner: 

u1 = uh(x)ul,.(r)eiw t. . . ,  etc., (21) 

where ul,(z) and ul,.(r) are the parts of u1 depending on x and r alone respectively. 
With this notation and u; as the complex conjugate of ul, integration (20) yields 
the final result 

where Re denotes 'the real part of' and ull is defined by (8) as 

ulT 2 [1-Jo(~~/~)fJ,(a)l.t (23) 

Numerical evaluation of equation (22) and those given by Bergh & Tijdeman 
[( 7) - (  1 l)] was carried out on a computer as high numerical accuracy is required, 
especially for cases near resonance. 

t As pointed out by Rott (private communication), the final result (22) is still valid in the 
more general case where ,u and h are not assumed constant but are temperature dependent. 
With ,u and h expanded in power series (cf. pressure, temperature, etc.) the calculation 
follows the same lines as that given in this paper. The modification to the energy equation 
(17)  is that the further term 

appears on the left-hand side in addition to 

But this term is part of (a )  as (19) now becomes 

(4) = - (h,[a5%/arIR) - ( W T I P T I R ) .  

Therefore the h a 1  result (22) is unaffected. 
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3. Discussion of the results 
Equation (20) can be written in the form 

As cz, = h,, the first-order specific enthalpy, it states that an enthalpy flux 

exists in the tube. The variation of E with x corresponds to the heat exchanged 
with the tube wall. 

Evaluation of (22 )  in the general case p =j= 0, h + 0 shows that the energy 
introduced mechanically by the piston is not the only energy flowing into the 
tube. An additional amount of heat is absorbed from the environment in the 
region of the velocity maxima (at x x $L in figure I) ,  though the heat production 
by dissipation is largest a t  the very same place. However, owing to the enthalpy 
flux E(x) ,  the dissipated mechanical energy and the heat absorbed in the region 
of the velocity maxima mainly show up a t  the velocity nodes-that is, a t  the 
closed end of the tube and at  the piston. 

In  the ideal acoustic case (p = 0, h = 0) no net energy flux exists in the tube 
as the phase difference between u1 and p, (and thus TI) in ( 2 4 )  equals &r. This 
means that the corrections arising from non-vanishing viscosity and heat con- 
ductivity (usually considered to be small) are the real and only ‘sources ’ of the 
thermal effects arising from acoustic oscillations. 

An interesting result is the strong dependence of the thermal effects on the 
Prandtl number Pr, illustrated in figure 2 ,  which shows the behaviour of q(x) for 
a tube with L = 1-4 m. The Prandtl number, which for all gases is fairly close to I ,  
has in this example been altered artificially by variation of A. The trend shown 
in figure 2 has been verified experimentally for 0.5 < Pr < 0.71 (Merkli 1973). 
This is possible as gas mixtures have Prandtl numbers considerably smaller than 
those of the pure components, e.g. for air-helium mixtures Eckert, Ibele & Irvine 
(1960) measured Pr,,, = 0.45 and for air-argon we calculated Prmin = 0.38. 
From figure 2 we see the following. 

(i) For Pr 9 1, the energy flux in the tube becomes unimportant and the heat 
produced by dissipation appears near the velocity antinodes, where it is generated 
as predicted by ‘naive’ theories. 

(ii) For Pr = 1,  the cooling effect vanishes. Thus for the prediction of cooling 
effects, it is a bad approximation to set Prrtir x 1. 

(iii) The smaller the Prandtl number the bigger the thermal effects (heating 
and cooling). 

It is difficult to understand the details of the second-order energy flux, as it is 
generated by a combination of amplitude changes due to viscosity and heat 
conductivity and, much more important, by phase shifts between the quantities 
ul, p,, TI, ete. : the phase differences are no longer equal to 0 or 47~ as for ,LL = 0, 
h = 0, and in addition they depend on x and r.  However, in the limiting case 
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FIGURE 2.  Thermal effects along the resonance tube for different Prandtl numbers (Adr 
artificially altered in the calculations). L = 1.4m, I = 13+3mm, R = 9.5mm, f =  l l O H z ,  
f,, "N 122 Hz, air at p, = lo6 N/mZ and To = 298 O K .  

1al-l = (v/WR2)+ -+ 0, Pr laI2 = wR2poc,/h < 1 the energy transport is easily 
demonstrated. Introducing a and Pri a into the expressions for pl, u1 and Tl [see 
(7 ) ,  ( 8 )  and (1 l )]  and retaining only the leading terms, the results for a tube with 
a closed end a t  x = L become 

u1 = .ti sin [w(L -x)/a,] eiut, 

pl = -ip0a,a cos [w(L-x)/aT] eiwt, 

(25 )  

(26) 

p,a,,iiWR2 o(L - x )  
cos - [I - 51 eiut, 

4A U T  
Tl = 

with a$ = po/po, the isothermal speed of sound. 
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In this approximation (vanishing viscosity, large conductivity, Pr 3 0) the 
thin velocity boundary layer makes a negligible contribution to the energy 
equation. It can therefore be discarded in (25)) which reduces to the inviscid case. 
Owing to t,he high conductivity, the thermal boundary layer fills the whole tube 
cross-section and the radial temperature distribution becomes parabolic. Yet 
much more important is the phase difference between p1 and T,, as will be shown 
below. Inspection of the first-order energy equation 

a ~ ,  ap, A a a ~ ,  
POC =--  r -  at at r ar ( ar ) 

shows the reason for the change of phase. The ratio of the first term on the left side 
to the term on the right side is of orderPr 1011~. Without heat conduction, the term 
on the right side vanishes, leavingp, and TI in phase. With strong conduction, on 
the other hand, P r  1011~ < 1 and the first term on the left side becomes negligible, 
leading to Tl N ap,/at and a phase difference of in between p1 and Tl. Thus u1 and 
T, [see (25) and (27)] are now in phase. A flow directed from the velocity maxima 
towards the nodes (that is, from the middle of the tube towards the piston and 
the tube end in the experiment) has a temperature above To while a flow away 
from the nodes is below To. This leads to a net enthalpy flux (E(x ) )  towards the 
velocity nodes which is comparable to ‘acoustic streaming’. As the dissipation 
is negligible, the enthalpy flux has to be compensated by heat exchanged with 
the tube wall. Combining (20), (25) and (27) we have 

which shows that the heating at  the velocity nodes equals the cooling at  the 
antinodes. The factor A-l (Pr N A-1) is not surprising as Tl and thus the enthalpy 
flux vanish for very high conductivity. 

In a recent paper Rott (1974) shows that the assumption of thin velocity and 
temperature boundary layers with P r  < 1 leads to ( q )  N Pr-4. A n  increase in h 
will therefore first increase ( q )  until the thermal boundary layer fills the whole 
tube; a further increase in h will decrease ( q )  again. 

4. Experimental set-up and pressure measurements 
Figure 3 shows the experimental arrangement. At one end of the tube, the 

oscillations are driven by a piston. In  order to have simple and clear boundary 
conditions, it  is essential that the piston performs a simple harmonic motion and 
therefore a special lag-free mechanical sine-motion generator was built which 
operates at  frequencies f = 0-130Hz and at  piston amplitudes 1 = 2.85-13.8mm. 
The other end of the tube is closed by a shiftable end piece so that different 
lengths may be set. This end piece contains a pressure transducer? which gives 
a reference signal, registered in every experiment. The pressure signal allows an 
exact determination of the oscillation frequency. To minimize vibrations of the 

Kistler charge amplifier, Type 566, with Kistler transducers, Type 410A at the tube 
end and Type 412 along the tube. 
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FIGURE 3. Experimental arrangement. 

tube, the latter is connected by a short half-elastic section to the driving system. 
For different, measurements along the tube (i.e. pressure, temperature), different 
tubes were used but these had mainly the same geometric parameters: L = 1.7 m, 
I = 13.8 mm, R = 9.5mm and fres x l00Hz. I n  the following such a tube will be 
referred to as the ‘standard tube’. 

First, different pressure measurements were made to examine the agreement 
between the real flow and the calculated one. Some results are plotted in figures 
4-7. Figure 4 shows pressure measurements at the closed end of the standard tube 
for frequencies close to the resonance frequency of 1OOHz. We clearly see that, 
approaching resonance, the pressure signal is no longer a true sine wave (i.e. 
f =  91.6 or 114.7Hz) and that there exists a frequency band ( f=  93-111Hz) 
where shocks appear. This finding is in good agreement with the theoretical 
prediction of Chester (1964), especially if a correction to  the resonance frequency 
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FIGURE 4. Pressure measurements at the closed end of the tube for frequencies around 
resonance. Standard tube, L = 1*7m, 7, = 13.8mm, R = 9.5mm,fr, 100Hz, air. 

for non-vanishing ,a is introduced (Merkli 1973). The real problem here is to find 
the speed of sound a, or the ambient temperature To in the tube, because rather 
strong thermal effects can arise for frequencies near resonance, as will be seen 
in 5 5 .  This is also the reason why in figure 5 the measured pressure amplitudes 
(standard tube) compare favourably with theory below resonance yet show a 
large scatter above the shock region. This scatter reflects the integral thermal 
influence for different passages (quick or slow) through resonance. If a smaller 
piston amplitude is chosen, the amplitudes of the oscillations decrease, the 
thermal effects diminish (as ( Z / J ~ ) ~ )  and the measured values of 9 fit the theoretical 
curves more closely. 
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FIGURE 5. Pressure amplitudes at the closed end of the tube for different frequencies. 
Standard tube, f,,, z 100 Hz. -, theory of Bergh & Tijdeman (1965), air attp, = 106N/m2 
and To = 298 "K; 0, 0, A ,  measurements. 

From the experiments mentioned above we can say that, outside a frequency 
band slightly larger than the shock region, the agreement between measurements 
and the theory of Bergh & Tijdeman (1965) is excellent. The accuracy seems to 
be limited only by the uncertainty of the air temperature in the tube. 

Figures 6 (a) and ( b )  show some further pressure measurements along the tube. 
Close to resonance (f = 94.1 Hz or wL/u, = 2.92) we see very well how shocks 
travel back and forth, whereas the curves for f = 65-4Hz or oL/a, = 2.03 with 
sinusoidal time dependence confirm the theory of Bergh & Tijdeman. 

5. Thermal measurements 
I n  these experiments the heat capacity of the wall was used to measure the 

heat flux q by the transient technique. Full details are given by Merkli (1973). 
The resonance tube was mounted coaxially within a second, wider tube. I n  this 
manner an annular channel was formed, through which ambient air could be 
sucked in order to have a uniform temperature along the tube a t  the beginning of 
an experiment, and to insulate the tube with a layer of air a t  rest during the 
experiment itself. The wall thickness d and the tube material (a composite of 
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FIGURE 6. Pressure measurements along the tube. Standard tube,fies = 100Hz. 
(a)f = 65.4%. ( b ) f  = 94.1Hz. 

glass fibres and Araldite, determining the heat conductivity) were chosen such 
that axial heat conduction and radial temperature gradients could be neglected. 
Therefore, if an oscillation with a frequency near resonance was suddenly 
started, the heat produced by the oscillations began to heat the tube wall locally 

(30) 
according to the relation 

and it was possible to determine q(x) from temperature-time readings registered 
by thermocouples? built into the tube wall. The heat capacity pcd of the tube was 
determined by calorimetry. 

In  figures 7-9 results of the thermal measurements for frequencies below, above 
and in the shock region are shown for the standard tube. We see the following. 

(i) As predicted by the thermoacoustic theory, cooling occura in the region of 
the velocity antinode if no shocks or, a t  the lower shock-region boundary, only 
weak shocks appear. 

(ii) Thermal measurements compare favourably with the calculations as long as 
pressure measurements ($4) are in good agreement with theory (e.g. wL/a ,  = 2-59 
or wL/u, = 2-71 in figure 7). This could be expected as no further assumptions 
had t o  be made for the thermal theory. 

q = pcd(aT/at) 

f Iron-constantan. Recorder: Honeywell, Lab/Test Recorder, Class 19. 
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0 I 
FIGURE 7. Thermal effects along the tube below resonance and shock conditions. Standard 
tube, air, Pr = 0.71, p,, = 105N/ma, To = 298 OK. -, thermoacoustic theory ( 8  2); 0, V, 
0, A, 0, measurements. 

(iii) Towards the shock region slight departures of the measurements from the 
theory appear. This is not only due to the growing importance of nonlinearities 
but also to  the appearance of turbulent bursts (see Merkli 1973; Merkli & 
Thomann 1975). 

(iv) Above the shock region (figure 8) the agreement between experiment and 
theory is not as good as below. This finding has the same cause as the discrepancies 
found in the pressure measurements in the same region, namely that the passage 
through resonance with its strong thermal effects still has some lasting influence 
above resonance. 

(v) At the lower boundary of the shock region (e.g. wL/u, = 2.90, figure 7), the 
discrepancies between theory and experiment are smaller than a t  the upper 
boundary (e.g. wL/u, = 3.37, figure 8). 

(vi) The thermal effects are strongest in the shock region, with qmax = 300- 
400 W/m2 for the standard tube and qmax = 500 W/m2 for the case L = 1-4 m, 
1 = 13.8 mm. As shown in figure 9 (or figure 4), the pressure amplitudes do not 
vary much in this frequency band. Likewise, the experimental curves for q(x) 
are not very different from one another in contrast to those for frequencies out- 
side the shock region. The cooling effect disappears here, yet the curves still have 
a minimum at the place predicted by the thermoacoustic calculations. 

The work described thus far indicates the heat flux for a uniform wall tempera- 
ture, but we still lack a feeling for the temperature differences it can produce. 
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FIGURE 8. Thermal effects along the resonance tube above resonance and shock conditions. 
Standard tube, air, Pr = 0.7 1, p, = lo5 N/m2, T, = 298 O K .  -, thermoacoustic theory (8  2); 
0, 7, D, A, 0, measurements. 
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FIGURE 9. Thcrmal effects along the resonance tube in the shock region and corresponding 
pressure signals at  the closed end of the tube. exp, experimental curves; th, curves according 
to the (here invalid) thermoacoustic theory. 
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FIGURE 10. Steady temperature rises AT,, at  the closed end for frequencies 
below resonance. Standard tube. 

Figure 10 gives us some information on this effect. It shows the difference AT,, 
between the measured equilibrium temperature at  the closed end of the standard 
tube and room temperature for frequencies below resonance. These values were 
reached after 15-20min. They are the result of a balance between the heat 
generated in the tube and the ill-defined heat loss to the surroundings, still they 
give an indication of the temperature effects and of the mean temperature in the 
tube, as mentioned in 3 4. The dependence of the steady temperature rise ATq on2 
is similar to that of q(,ua;/R)-l. However, as the piston continuously introduces 
mechanical energy into the well-insulated tube, no temperature decrease (except 
initially) was observed in the tube region near x = +L. 

6.  Conclusions and remarks 
Some new results on the resonance tube were found. The most striking one is 

that cooling exists in the region of greatest dissipation due to friction. When 
shocks are absent, the new theory allows an accurate calculation of these effects. 
Discrepancies arise near resonance owing to nonlinearities and for strong oscilla- 
tions also owing to turbulence. The occurrence of turbulence is treated in a 
separate paper (Merkli & Thomann 1975; or Merkli 1973). The present work is 
a further step towards an understanding of the Hartmann-Sprenger tube. Full 
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insight into the physical mechanisms in the shock region should be possible by an 
extension of Chester’s (1964) theory. For strong oscillations, the influence of the 
turbulent bursts present in this case also has to be investigated. 

Our treatment of the problem is limited to  the calculation of the heat flux 
penetrating the tube wall. If we are interested in the details of the energy flux 
inside the tube, we have to solve the whole set of differential equations (14)-( 18) 
for the second-order quantities, which is possible, but requires a lot of work. 

In  principle the resonance tube can be used as a heat pump. For this case, two 
questions remain unanswered. 

(i) What temperature differences along the tube can be overcome by the 
heat flux? (In the present investigation the wall temperature was kept constant.) 

(ii) What is the smallest Prandtl number that can be realized in gas mixtures 
(giving the maximum effectiveness of the device) ? 

The authors would like to acknowledge here interesting discussions with 
Professor Dr N. Rott and the valuable suggestions he made. 

Appendix. Derivation of (20) 

the quantities of second order have the forms 

Therefore time averaging (1 7) gives 

By substitution in the appropriate differential equations it can be verified that 

T2 = TZl(x, r )  + TZ2(x, r )  e2iwt, etc. (A 1 )  

If this form of the energy equation is integrated over the tube cross-section the 
result is 

The continuity equation of first order, 

when multiplied by c,Tl, time averaged and integrated over the tube cross- 
section becomes 

This can easily be combined with the first two terms on the right-hand side of 
(A 3). The momentum equation of first order, 
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when multiplied by ul, time averaged and integrated over the tube cross-section 
becomes 

( pOIoB rul 2 dr )  +( Ioa r u 1 2  dr )  -( p/o’uI f ( r  2) d r )  = 0. (A 7) 

Adding this to the last two terms of (A 3) gives 

This is (20), 

because all the other integrals in (AS) vanish, those with partial derivatives 
with respect to r owing to the values a t  the integration limits and those with 
partial derivatives with respect to t owing to time averaging. 
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